
Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier.com/locate/cviu

VideoLSTM convolves, attends and flows for action recognition

Zhenyang Li⁎,a, Kirill Gavrilyuka, Efstratios Gavvesa, Mihir Jaina,b, Cees G.M. Snoeka,b

aQUVA Lab, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
bQualcomm Research Netherlands, Science Park 400, Amsterdam, The Netherlands

A R T I C L E I N F O

Keywords:
Action recognition
Video representation
Attention
LSTM

A B S T R A C T

We present VideoLSTM for end-to-end sequence learning of actions in video. Rather than adapting the video to
the peculiarities of established recurrent or convolutional architectures, we adapt the architecture to fit the
requirements of the video medium. Starting from the soft-Attention LSTM, VideoLSTM makes three novel
contributions. First, video has a spatial layout. To exploit the spatial correlation we hardwire convolutions in the
soft-Attention LSTM architecture. Second, motion not only informs us about the action content, but also guides
better the attention towards the relevant spatio-temporal locations. We introduce motion-based attention. And
finally, we demonstrate how the attention from VideoLSTM can be exploited for action localization by relying on
the action class label and temporal attention smoothing. Experiments on UCF101, HMDB51 and THUMOS13
reveal the benefit of the video-specific adaptations of VideoLSTM in isolation as well as when integrated in a
combined architecture. It compares favorably against other LSTM architectures for action classification and
especially action localization.

1. Introduction

This paper strives to classify video actions like shaving, biking and
punch in an end-to-end fashion. This challenging task is commonly
addressed by learning a video’s spatial appearance and motion flow
with the aid of deep convolutional neural networks, before temporal
pooling, e.g., Simonyan and Zisserman (2014), Feichtenhofer et al.
(2016b) and Wang et al. (2016). Different from these modern archi-
tectures, which all learn a global video representation without con-
sidering local spatial structures over time, we prefer to embed the
spatio-temporal nature of the action into our representation learning,
with the added benefit that we obtain the action’s location for free.

We draw inspiration from saliency, a classical topic in computer
vision (Itti et al., 1998) that was recently shown to emerge from re-
current neural network architectures as well, e.g., Xu et al. (2015). The
first to use such visual attention for action recognition in video is the
work by Sharma et al. (2015); 2016). They extend the soft-Attention
model of Xu et al. (2015), intended for image captioning, to action
recognition in video. First, the appearance of individual video frames is
encoded as a feature map tensor derived from the last convolutional
layer of a GoogLeNet (Szegedy et al., 2015). Then, the model propa-
gates the vectorized tensor through an LSTM (Hochreiter and
Schmidhuber, 1997) and predicts the attention at the next frame in
addition to the action label. Their model is very effective for action
classification, despite the fact that it leverages image appearance only,

while completely ignoring the motion inside a video. We propose a new
LSTM architecture that integrates attention, appearance and motion of
a video to arrive at better action classification and localization.

The standard LSTM (Hochreiter and Schmidhuber, 1997) treats all
incoming data as a vector, even though it is well known that an image
has a spatial correlation that is better preserved by convolutions than
inner products (LeCun et al., 1998). Moreover, convolutional neural
networks ensure better shift, scale and distortion invariance by lever-
aging local receptive fields, shared weights, and pooling, especially
when they are very deep (He et al., 2015; Simonyan and Zisserman,
2015; Szegedy et al., 2015). Shi et al. (2015) introduced convolutional
structures, rather than vectors, in both the input-to-state and state-to-
state transitions of a standard LSTM for radar map forecasting.
Ballas et al. (2016) stack multiple convolutional recurrent units in a
deep hierarchical architecture. Their model achieves better perfor-
mance than a single-layered recurrent neural network. In modeling
videos, however, convolutions with a deep architecture alone do not
suffice and attention must also be considered, as we will show in the
experiments. Hence, to reckon the spatio-temporal nature of the video
when using an LSTM, we must hardwire the LSTM network with con-
volutions and spatio-temporal attentions.

In this work we advocate and experimentally verify that in order to
model videos accurately with LSTMs, we must adapt the LSTM archi-
tecture to fit the video medium, not vice versa. Such a model must
address the video properties, i.e. appearance, motion and attention,
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simultaneously and not in isolation. In fact, our experiments reveal that
modeling a subset only of the properties brings little, if any, improve-
ment, while a joint treatment results in consistent gains. We propose
VideoLSTM, a recurrent neural network architecture intended for action
classification and localization. VideoLSTM makes three contributions.
First, VideoLSTM recognizes that video frames have a spatial layout.
Hence the video frame encoding as well as the attention should be
spatial too. We introduce convolutions to exploit the spatial correlation
in images and adapt the soft-attention model to ensure the spatial
structures are also preserved over time. Second, VideoLSTM in-
corporates motion-based attention, as motion not only informs us about
the action content, but also better guides the attention towards relevant
spatio-temporal locations. And finally, we demonstrate how the atten-
tion from VideoLSTM can be used for action localization by relying on
just the action class label. We summarize our architecture in Fig. 1, and
provide a synopsis of related work next.

2. Related work

The literature on action recognition in video is vast and too broad
for us to cover here completely. We reckon and value the impact of
traditional video representations, e.g., Wang and Schmid (2013),
Jain et al. (2013), Sadanand and Corso (2012), Peng et al. (2016);
2014),Fernando et al. (2015) and Lan et al. (2015), and recent mixtures
of shallow and deep encodings e.g., Wang et al. (2015a) and
Jain et al. (2015). Here we focus on deep end-to-end alternatives that
have recently become popular and powerful.

ConvNet architectures. One of the first attempts of using a deep
learning architecture for action recognition is by Ji et al. (2013), who
propose 3-d convolutional neural networks. A 3-d convolutional net-
work is the natural extension of a standard 2-d convolutional network
to cover the temporal domain as a third dimension. However, proces-
sing video frames directly significantly increases the learning com-
plexity, as the filters need to model both appearance and motion var-
iations. To compensate for the increased parameter complexity larger
datasets are required. Indeed, Tran et al. (2015) demonstrated that 3-d
convolutional networks trained on massive sport video
datasets (Karpathy et al., 2014) yield significantly better accuracies.

To avoid having to deal with this added complexity of spatio-tem-
poral convolutional filters, Simonyan and Zisserman (2014) proposed a
two-stream architecture to learn 2-d filters for the optical flow and
appearance variations independently. In order to capture longer tem-
poral patterns, several frames are added as multiple consecutive

channels as input to the network. To account for the lack of training
data a multi-task setting is proposed, where the same network is opti-
mized for two datasets simultaneously. Similar to Simonyan and
Zisserman (2014) we also use optical flow to learn motion filters. Dif-
ferent from Simonyan and Zisserman (2014), however, we propose a
more principled approach for learning frame-to-frame appearance and
motion transitions via explicit recurrent temporal connections.

LSTM architectures. LSTM networks (Hochreiter and
Schmidhuber, 1997) model sequential memories both in the long and in
the short term, which makes them relevant for various sequential
tasks (Donahue et al., 2015; Jia et al., 2015; Karpathy and Fei-Fei,
2015; Wu et al., 2015; Yue-Hei Ng et al., 2015). Where early adopters
used traditional features as LSTM input (Baccouche et al., 2010; 2011),
more recently both Yue-Hei Ng et al. (2015) and Donahue et al. (2015)
propose LSTMs that explicitly model short snippets of ConvNet acti-
vations. Ng et al.demonstrate that an average fusion of LSTMs with
appearance and flow input improves over improved dense trajectories
(Wang and Schmid, 2013) and the two-stream approach
of Simonyan and Zisserman (2014), be it that they pre-train their ar-
chitecture on 1 million sports videos. Srivastava et al. (2015) also pre-
train on hundreds of hours of sports video, but without using the video
labels. Their representation demonstrates competitive results on the
challenging UCF101 and HMDB51 datasets. We also rely on an LSTM
architecture that combines appearance and flow for action recognition,
but without the need for video pre-training to be competitive.

ALSTM architectures. Where the traditional LSTMs for action
classification emphasize on modeling the temporal extent of a sequence
with the use of spatial ConvNets, Attention-LSTMs (ALSTMs) also take
into account spatial locality in the form of attention. While originally
proposed for machine translation (Bahdanau et al., 2015), it was
quickly recognized that a soft-Attention mechanism instead of a fixed-
length vector is beneficial for vision problems as well (Xu et al., 2015).
The attention turns the focus of the LSTM to particular image locations,
such that the predictive capacity of the network is maximized.
Sharma et al. (2015); 2016) proposed the first ALSTM for action clas-
sification, which proved to be an effective choice. However, by staying
close to the soft-Attention architecture for image captioning by
Xu et al. (2015), they ignore the motion inside a video. Moreover, ra-
ther than vectorizing an image, for vision it is more beneficial to rely on
convolutional structures (LeCun et al., 1998; Shi et al., 2015). We in-
corporate convolutions and motion-based attention into the ALSTM,
which is not only important for the action classification, but also results
in better attention for action localization.

Fig. 1. The proposed VideoLSTM network. The blue
container details the Convolutional ALSTM
(Section 3.1), the green container details the motion-
based attention (Section 3.2), while in the pale red
container we rely on attention maps for action lo-
calization (Section 4). VideoLSTM learns to classify
actions in an end-to-end manner and localizes the
action from an action class label only. (For inter-
pretation of the references to color in this figure le-
gend, the reader is referred to the web version of this
article.)
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Action localization. In action localization two approaches are
dominant. One approach first relies on unsupervised action proposals
and then classifies each one with the aid of box annotations,
e.g., Jain et al. (2014) and van Gemert et al. (2015). The other is to rely
on supervised detection of action regions using box annotations and
then learning to link these over time, again using box supervision,
e.g., Saha et al. (2016) and Weinzaepfel et al. (2015). In general, the
more box supervision, the better the action localization result. Recently,
Mettes et al. (2016) showed how unsupervised proposals in combina-
tion with point supervision can be competitive with box supervision.
Our end-to-end solution for action classification and localization learns
from just the action class label, without the need for any box- or point-
supervision, while still being able to exploit and predict the most salient
action location.

3. VideoLSTM for action classification

VideoLSTM starts from the soft-Attention LSTM model
of Xu et al. (2015) (or ALSTM) and introduces two novel modules, the
Convolutional ALSTM and the Motion-based Attention networks.

Notation and terminology. We denote 1-d vector variables with
lowercase letters, while 2-d matrix or 3-d tensor variables are denoted
with uppercase letters. Unless stated otherwise, all activation functions
(σ( · ), tanh ( · )) are applied on an element-wise manner and ⊙ is an
element-wise multiplication. When implementing a particular archi-
tecture containing multiple copies of the network, e.g., in unrolled
networks, we refer to each of the networks copies as unit. For instance,
the unrolled version of an LSTM network, see Fig. 1, is composed of
several LSTM units serially connected.

We start with a video composed of a sequence of T frames and
obtain the image representation = …X X X X{ , , , }T T1: 1 2 for each frame
using a ConvNet (Krizhevsky et al., 2012; Simonyan and Zisserman,
2015; Szegedy et al., 2015). Unlike previous studies (Donahue et al.,
2015; Yue-Hei Ng et al., 2015) that use features from the last fully
connected layer, we choose the convolutional feature maps, which re-
tains spatial information of the frames. Therefore, a feature map Xt at
each timestep t has a dimension of N×N×D, where N×N is the
spatial dimentionality of the convolutional feature map and D equals to
the number of convolutional filters that produce the feature map. We
also define ∼Xt as the attention weighted image representation by
combining image features Xt and the attention map At at each frame t.
At is a N×N matrix composed of attention weights at all spatial lo-
cations.

3.1. Convolutional ALSTM

A video naturally has spatial and temporal components. However,
standard LSTM and ALSTM networks make use of full connections and
treat the input as linear sequences by vectorizing the feature maps or
using the fully connected activations from a deep convolutional net-
work. This results in a major drawback for handling spatio-temporal
data like videos, since no spatial information is encoded. It is an im-
portant property of images that nearby pixels are more strongly cor-
related than distant pixels. This property suggests local connectivity is
preferred rather than full connectivity in images. In order to preserve
the spatial structure of the frames over time, we propose to replace the
fully connected multiplicative operations in an LSTM unit with con-
volutional operations. As research on LSTM has progressed, different
LSTM variants have been proposed. We utilize the LSTM unit as de-
scribed in Donahue et al. (2015), a slight simplification derived from
the original LSTM unit proposed in Hochreiter and
Schmidhuber (1997). The LSTM updates at time step t given inputs ∼Xt
as follows:

= + +
∼

−I σ W X W H b( * * )t xi t hi t i1 (1)

= + +
∼

−F σ W X W H b( * * )t xf t hf t f1 (2)

= + +
∼

−O σ W X W H b( * * )t xo t ho t o1 (3)

= + +
∼

−G W X W H btanh( * * )t xc t hc t c1 (4)

= ⊙ + ⊙−C F C I Gt t t t t1 (5)

= ⊙H O Ctanh( ),t t t (6)

where * represents the convolutional operation, Wx∼ , Wh∼ are 2-d
convolutional kernels. The gates It, Ft, Ot, the candidate memory Gt,
memory cell −C C, ,t t 1 and hidden state −H H,t t 1 are 3-d tensors and re-
tain spatial dimensions as well.

Different from LSTM and ALSTM who rely on a multi-layer per-
ceptron (MLP) to generate the attention weights, we employ a shallow
ConvNet with no fully connected layers conditioned on the previous
hidden state and the current feature map. More specifically, the at-
tention map is generated by convolving the previous hidden state −Ht 1
and the current input feature map Xt,

= + +−Z W W X W H b*tanh( * * ).t z xa t ha t a1 (7)

By replacing the inner products with convolutions, Zt is a 2-d score map
now. From Zt we can compute the normalized spatial attention map:

= =
∑ ∑

−A p att X H
Z

Z
( , )

exp( )
exp( )

,t
ij

ij t t
t
ij

i j t
ij1

(8)

where At
ij is the element of the attention map at position (i, j). Instead of

taking the expectation over the features from different spatial locations

as in ALSTM ( = ∑ =
x a x͠ t i

N
t
i

t
i

1

2
), we now preserve the spatial structure by

weighting the feature map locations only without taking the expecta-
tion. Formally, this is simply equivalent to an element-wise product
between each channel of the feature map and the attention map:

= ⊙
∼X A X .t t t (9)

Effectively the attention map suppresses the activations from the spatial
locations that have lower attention saliency.

Between the ALSTM and the Convolutional ALSTM models we spot
three differences, see Fig. 2 for an illustration. First, by replacing the
inner products all the state variables, It, Ft, Ot, Gt, Ct, Ht, of the Con-
volutional ALSTM model retain a spatial, 2-d structure. As such, the
video is now reckoned as a spatio-temporal medium and the model can
hopefully capture better the fine idiosynchracies that characterize
particular actions. As an interesting side note, given that the state
variables are now 2-d, we could in principle visualize them as images,
which would add to the understanding of the internal workings of the
LSTM units. Second, Convolutional ALSTM resembles essentially a deep
ConvNet, whose layers have recurrent connections to themselves. Last,
we should emphasize that the Convolutional ALSTM architecture can
receive as input and process any data with a spatial nature. In this work
we experiment with RGB and flow frames.

3.2. Motion-based attention

In the Convolutional ALSTM network the attention is generated
based on the hidden state of the previous ALSTM unit. The regions of
interest in a video, however, are highly correlated to the frame loca-
tions where significant motion is observed. This is especially relevant
when attention driven recurrent networks are considered. It is reason-
able, therefore, to use motion information to help infer the attention in
the ALSTM and Convolutional ALSTM network. Specifically, we pro-
pose to add another layer with bottom-up connection with the
Convolutional ALSTM layer. This layer corresponds to the bottom row
of Convolutional LSTM units of Fig. 1 in the green container, which is
updated as follows:
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where the previous hidden state from top layer −Ht 1 is also given as
input to the bottom layer, and Mt is the feature map extracted from

optical flow image at timestep t. Wx
m, Wh

m are 2-d convolutional kernels
operating on the inputs and hidden states from the bottom layer, while
convolutional kernels We

m are applied to the hidden states from the top
layer. As shown in Fig. 1, the whole network is built by stacking two
layers of convolutional LSTMs, each of which has its individual input
streams (RGB or flow images). Based on the updated LSTM cell the
attention map is now conditioned on the current hidden state Ht

m from
bottom layer. This contrasts to Eq. (8), and standard LSTM architectures
also, where the attention is conditioned on the −Ht 1 from top layer.
Namely, with the updated LSTM cell the attention at frame t depends on
the hidden state from the same frame t, instead of the previous frame

−t 1.
Moreover, note that the motion-based attention map is applied on

Fig. 2. To the left is an ALSTM model, which weighs the input vector dimensions based on attention and outputs a D-dimensional vector. To the right the proposed Convolutional ALSTM
network, which acknowledges the two-dimensional, spatial input, performs a convolution operation and returns a N×N×D-dimensional tensor preserving the spatial structure of a
video.

Fig. 3. VideoLSTM generates attention feature maps for an
input sequence of frames from an action class label only.
These maps are then first up-sampled and smoothed with a
Gaussian filter into saliency maps, shown superimposed over
frames. Attention saliency maps are then thresholded and
processed to localize the action (green box). With local tem-
poral smoothing the boxes are temporally better aligned and
lead to better localization of action compared to the ground-
truth (yellow box). (For interpretation of the references to
color in this figure legend, the reader is referred to the web
version of this article.)
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the input feature map Xt from the top layer. Therefore, the bottom layer
(green container in Fig. 1) only helps to generate the motion-based
attention and does not provide any direct information to the top layer
for the final classification.

VideoLSTM. As a last step, we define our VideoLSTM as the two
layer motion-based Convolutional ALSTM architecture in Fig. 1.

4. VideoLSTM for action localization

By design the VideoLSTM provides a sequence of attention maps At,
see Eq. (8), which effectively represent the appearance and motion
saliency at each frame. Each of these attention maps are first up-scaled
with 2-dimensional interpolation assuming affine transform and then
smoothed with a Gaussian filter, resulting into saliency maps,

⋯S S S{ , , , }T1 2 for the T video frames. See Fig. 3 for an example input
video frame sequence. Given saliency maps {St}, our goal is to sample
promising spatio-temporal tubes or sequences of spatial regions from
the video, which are likely to bound the performed action spatially and
temporally. Formally, the pth action proposal is given by =α α{ },p p

t

where αp
t is a bounding-box enclosing a region from the tth frame.

One can think of a variety of complex models exploiting the saliency
maps to formulate this problem. We take a naive, greedy approach that
selects regions in frame t by simply applying a threshold on saliency
map St. Each connected component thus obtained forms a region,
leading to a set of candidate boxes Bt in St,

= ≥B CC S θ( )t box t t (16)

where CCbox() is a function generating 8-connected components en-
closed by rectangular boxes and θt is threshold for St.

With |Bt| number of boxes for frame t, there are ∏t|Bt| possible ac-
tion proposals. Here, it is possible to generate a large number of action
proposals and encode them with state-of-the-art motion features similar
to Jain et al. (2014), van Gemert et al. (2015) and
Weinzaepfel et al. (2015). However, we choose to avoid using
bounding-box ground-truth and keep our approach end-to-end by
generating only a single detection. In practice, we set high enough
threshold such that we rarely get more than one box in a frame. In case
of multiple boxes we select the one that has better IoU (intersection
over union) with the preceding selected box. Thus, unlike other ap-
proaches (van Gemert et al., 2015; Mettes et al., 2016; Saha et al., 2016;
Weinzaepfel et al., 2015) in action detection that rely on a large number
of proposals, we output only one proposal per video; hence dropping the
subscript p, we have:

=
∩

∪∈

−

−
α b α

b α
argmaxt

b B

t

t

1

1
t (17)

Sometimes, αt, are sampled from the background, away from the action
or actor. This is expected as the attentions from VideoLSTM are directed
to focus on the locations that are discriminative for classification and
context information for certain actions can be helpful. Continuing the
Long Jump example from Fig. 3, the running track distinguishes it from
several other actions. Yet, most of the attention does fall on the action/
actor and we apply temporal smoothing on the sequence of boxes, αt, so
that sudden deviations from the action can be minimized. We use lo-
cally weighted linear regression (first degree polynomial model) to
smooth the boxes, such that they do not jitter much from frame to
frame.

Other than the attention, VideoLSTM also provides classification
scores for each class and each frame. We average these scores over
frames to obtain confidence scores of the single proposal for each action
class of interest and perform action localization. This is all done for the
sake of simplicity. We believe a more sophisticated approach, e.g.,
considering multiple scales and ratios or using contour information of
objects, will further improve action localization performance. Still two
key features of our approach that most of the existing action detectors

do not have are: (1) we do not require bounding box ground-truth for
training and (2) we do not need to see the whole video at once, frames are
processed as they are received, allowing for applications that need to
process live video streams.

5. Experiments

5.1. Datasets

UCF101 (Soomro et al., 2012). This dataset is composed of about
13,000 realistic user-uploaded video clips and 101 action classes. The
database is particularly interesting, because it comprises of several as-
pects of actions in video such as various types of activities, camera
motion, cluttered background and objects/context. It also provides a
relatively large number of samples that is needed for training ConvNet/
LSTM networks and hence has been popular among approaches based
on deep learning. There are 3 splits for training and testing, following
other recent works on end-to-end learning, e.g., Simonyan and
Zisserman (2014) and Donahue et al. (2015) we report averaged results
on all the splits. Classification accuracy is used as evaluation measure.

HMDB51 (Kuehne et al., 2011). Composed of 6766 video clips from
various sources, the HMDB51 dataset has 51 action classes. The dataset
has two versions, the original and the one with motion stabilization, we
use the more challenging original one. It has 3 train/test splits each
with 3570 training and 1530 test videos. Following the common
practice in end-to-end learning we evaluate with classification accuracy
averaged over the 3 splits.

THUMOS13 localization (Idrees et al., 2017; Jiang et al., 2013).
This dataset is a subset of UCF101 with 24 classes (3207 videos) and is
provided with bounding-box level groundtruth for action localization.
The dataset is quite challenging and is currently one of the largest da-
tasets for action localization that has a rich variety of actions. The lo-
calization set consists of mostly trimmed videos with the actor mostly
visible along with a few untrimmed videos also. Following the previous
works (van Gemert et al., 2015; Mettes et al., 2016; Weinzaepfel et al.,
2015; Yu and Yuan, 2015), we use the first split and report mean
average precision (mAP) over all 24 classes.

5.2. Implementation details

As reported in the literature (Feichtenhofer et al., 2016b; Wang
et al., 2016), end-to-end architectures are sensitive to hyperparameters,
layer designs, different optical flow variations, training styles etc. These
optimal settings typically vary per architecture, which makes compar-
isons on fair grounds hard. For this reason in our internal experiments
–where we study Convolutional ALSTM and motion-based attention and
compare with traditional architectures – we purposefully reconfigure all
architectures and training styles to be similar for fair assessment.
However, in the experiments where we compare against the state-of-
the-art, we rely on our optimal network settings and compare with the
original numbers published in the related literature. All code and
models will be made available for future reference.

ConvNet architectures. We choose the VGG-16 (Simonyan and
Zisserman, 2015) architecture which consists of 13 convolutional layers
to train the appearance network and optical flow network. For both
networks, we choose the pre-trained ImageNet model as initialization
for training. The input of the optical flow network is a single optical
flow image which has two channels by stacking the horizontal and
vertical flow fields. The optical flow is computed from every two ad-
jacent frames using the algorithm of Zach et al. (2007). We discretize
the values of flow fields by linearly rescaling them to [0, 255] range.
We then extract the image features from the last fully connected layer
(i.e., fc7) or the last pooling layer (i.e., pool5) of each VGG-16 network.
Those features are fed into our LSTM architectures.

LSTM, ALSTM and VideoLSTM architectures. All our LSTM
models have a single layer with 512 hidden units with input feature
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vectors from fc7. For ALSTM and VideoLSTM, we use the convolutional
feature maps extracted from the pool5 layer with size 7× 7×512.
Although the convolutional features from the earlier layers (e.g., conv5,
pool4) could also be used or combined (Ballas et al., 2016), we consider
pool5 only in our work for the sake of efficiency. Convolutional kernels
for input-to-state and state-to-state transitions are of size 3× 3, while
1× 1 convolutions are used to generate the attention map in Eq. (7).
All these convolutional kernels have 512 channels. The hidden re-
presentations from the LSTM, ALSTM and VideoLSTM layer are then
fully connected to an output layer which has 1024 units. A
dropout (Srivastava et al., 2014) is also applied on the output before fed
to the final softmax classifier with a ratio of 0.7.

For network training, we randomly sample a batch of 128 videos
from the training set at each iteration. From each video, a snippet of 30
frames is randomly selected. We do not perform any data augmentation
while being aware it will improve our results further. We train all our
models by minimizing the cross-entropy loss using back propagation
through time and rmsprop (Tieleman and Hinton, 2012) with a learning
rate of 0.001 and a decay rate 0.9. At test time, we follow
(Simonyan and Zisserman, 2014) to sample 25 equally spaced segments
from each video with size of 30 frames. To obtain the final video-level
prediction, we first sum the LSTM frame-level class predictions over
time and then average the scores across the sampled segments. For
HMDB51 dataset, as the number of videos for training is very small, we
use our pre-trained model on UCF101 to initialize its model. All the
models are trained on an NVIDIA GeForce GTX Titan.

5.3. Action classification

Convolutional ALSTM.In the first experiment we compare the
Convolutional ALSTM (ConvALSTM) to other architectures using ap-
pearance and optical flow input frames. We present the results on
UCF101 and HMDB51 first split in Table 1.

We first focus on the appearance frames. A ConvNet (Simonyan and
Zisserman, 2015) already brings decent action classification, but in-
serting a standard LSTM on top, as suggested in Yue-
Hei Ng et al. (2015) and Donahue et al. (2015) brings no significant
benefit. The reason is that even a single RGB frame can be quite re-
presentative of an action. Moreover, since subsequent frames are quite
similar, the LSTM memory adds little to the prediction. Adding soft
attention (Xu et al., 2015) to the LSTM to arrive at the ALSTM proposed
by Sharma et al. (2015); 2016), even deteriorates the action classifi-
cation performance, while a Convolutional LSTM has a marginal impact
as well. However, when considering the proposed Convolutional
ALSTM on appearance data, results gain + 2.2% on UCF101 and + 1.1%
on HMDB51. A small but important improvement, given that all other
LSTM-based architectures fail to bring any benefit over a standard
ConvNet.

Before discussing the impact of flow, we first note that both the
original ALSTM (Sharma et al., 2016) and ConvLSTM models (Shi et al.,
2015) rely on appearance only. A design choice which impacts their
action classification potential. With flow frames all the LSTM-based
models improve over the ConvNet baseline. We attribute this to the

observation that in flow frames the background is not as descriptive and
one can better rely on the succession of flows to recognize an action.
When employing attention or convolutions independently with an
LSTM we obtain a noticeable improvement over the standard LSTM,
indicating that more refined LSTM architectures can exploit the flow
information better. Once again, when considering the proposed Con-
volutional ALSTM we observe the most consistent improvement: + 3.8%
over LSTM, + 2.6% over ALSTM and + 1.7% over Convolutional LSTM
on UCF101. The improvement is even larger on HMDB51.

Motion-based Attention. Next we evaluate the impact of motion-
based attention, by explicitly modeling motion saliency using optical
flow to help generate the attention maps while using RGB appearance
input. We present the results in Table 2 on UCF101 and HMDB51 first
split. For ALSTM models motion-based attention obtains obvious im-
provements for classification, outperforming appearance-based atten-
tion by +1.6% on UCF101 and +1.7% on HMDB51, while for Con-
volutional ALSTMs we obtain also +1.5% improvement on HMDB51.
On UCF101 the improvement is smaller, because the background con-
text is already a very strong indicator of the action class. We expect that
for datasets where the background context is less indicative of the ac-
tion class, motion-based attention will boost accuracy further.

Fig. 4 shows the attention maps generated from our proposed Vi-
deoLSTM using RGB raw frames as input and optical flow images as
input. We can see that the model does not always attend to the actor
when using RGB frames, although the video is correctly classified. The
first video is classified as Long Jump, however, the running track dis-
tinguishes it from other actions. In the second video, the model tends to
look at the diving board and predicts the action Diving. The contextual
cues in the background are already very strong indicators of some ac-
tion classes. By contrast, the attention generated using optical flow
images is more likely to focus consistently on the person performing the
action. Therefore, we use the attention maps generated from optical
flow images in our action localization experiments.

Comparison with other LSTM architectures. We list in Table 3
the accuracies from other LSTM architectures for action classification.
As designs and training regimes vary widely, direct comparisons are
hard to make. We list properties of individual architectures to better
assess relative merit. Instead of using average, we simply use product
fusion on predictions from our VideoLSTM models with RGB input and
optical flow input. VideoLSTM obtains the best result on both UCF101
and HMDB51. We note that the second best performing LSTM archi-
tecture by Yue-Hei Ng et al. (2015), the same architecture as the second
column in Table 1, performs pre-training on 1 million sport videos,
where our approach pre-trains on ImageNet only. Our implementation
of the ALSTM of Sharma et al.obtains 75.8 mAP on UCF101, where our
VideoLSTM obtains 88.9, a notable difference due to the convolutions
and motion-based attention. On HMDB51 the difference is even more
pronounced.

State-of-the-art comparison: fusion. As a final experiment, we
explore the benefit of a late fusion of VideoLSTM action predictions
with approaches relying on hand-crafted iDT features (Peng et al.,
2014; Wang and Schmid, 2013) and object responses (Jain et al., 2015).
The prediction scores are fused by product with exponential weights.
We report the results on UCF101 and HMDB51 in Table 4. First of all,
adding our VideoLSTM on top of iDT features improves the results on
UCF101 to 91.5% and on HMDB51 to 63.0% (data not shown). This

Table 1
Convolutional ALSTM networks. For both appearance and optical flow input, our pro-
posed ConvALSTM improves accuracy the most.

UCF101 HMDB51

RGB Flow RGB Flow

ConvNet 77.4 75.2 42.2 41.8
LSTM 77.5 78.3 41.3 46.0
ALSTM 77.0 79.5 40.9 49.2
ConvLSTM (This paper) 77.6 80.4 41.8 48.2
ConvALSTM (This paper) 79.6 82.1 43.3 52.6

Table 2
Motion-based attention further improves both the ALSTM model and ConvALSTM.

Attention UCF101 HMDB51

ALSTM ConvALSTM ALSTM ConvALSTM

Appearance-based 77.0 79.6 40.9 43.3
Motion-based 78.6 79.9 42.6 44.8
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Fig. 4. VideoLSTM generates attention maps for an input sequence of images. For each video, the first row indicates the original video frames. The second row represents the attention
maps generated using RGB raw frames as input, while the third row is generated using optical flow images as input. Attention maps are shown superimposed over frames, and the
brightness indicates the strength of attention. Note that the attention generated using optical flow images is more likely to focus consistently on the person performing the action.

Table 3
State of the art comparison for LSTM-like architectures. Results on UCF101 and HMDB51 are averaged over all 3 splits, the UCF101 results for Sharma et al. (2015, 2016) are based on
our implementation of their ALSTM. Srivastava et al. (2015) report results on HMDB51 using RGB input only. Even without the need to train on more than 1 million sports videos,
VideoLSTM is competitive amidst alternative LSTM architectures.

Input ConvNet LSTM Pre-Training UCF101 HMDB51

RGB Flow Deep Very deep Plain Attention ImageNet Sports1M

Donahue et al. (2015) ✓ ✓ ✓ – ✓ – ✓ – 82.3 n/a
Yue-Hei Ng et al. (2015) ✓ ✓ – ✓ ✓ – ✓ ✓ 88.6 n/a
Srivastava et al. (2015) ✓ ✓ – ✓ ✓ – ✓ ✓ 84.3 44.0
Sharma et al. (2015); 2016) ✓ – – ✓ – ✓ ✓ – 75.8 41.3
This paper ✓ ✓ – ✓ – ✓ ✓ – 88.9 56.4
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implies that our end-to-end prediction is highly complementary to
hand-crafted approaches, as previously also observed by
others (Feichtenhofer et al., 2016b; Lev et al., 2016; de Souza et al.,
2016). When combined with the object and iDT motion encoding
from Jain et al. (2015), we further improve performance to 92.2% on
UCF101, where Feichtenhofer et al. (2016a) score 94.6%, and we set a
new state-of-the-art of 73.7% on HMDB51.

5.4. Action localization

In the final experiment we evaluate VideoLSTM for action

localization. We set the threshold for saliency maps in Eq. (16) to a
constant ( =θ 100t ) to ensure pixels with reasonable attention are in-
cluded. We did not optimize or cross-validate over training data as it
would require bounding-box ground-truth. Along with VideoLSTM, we
also process the saliency maps from the ALSTM of Sharma et al. (2016),
and compare the two in Fig. 5.

There are two things to note here. First, VideoLSTM leads to strik-
ingly higher recalls than ALSTM. Due to its motion awareness and
spatial structure preserving properties, VideoLSTM is capable of loca-
lizing actions, whereas ALSTM does not seem to do so. Second, the
impact of temporal smoothing is considerable in case of VideoLSTM,
which means most of the attentions are on the action/actor foreground.
In contrast, smoothing does not help ALSTM which suggests that the
attention is either stationary or is evenly distributed between fore-
ground and background.

In Table 5, we compare with state-of-the-art action localization
methods on the THUMOS13 localization dataset for an IoU thresholds
of 0.2, following (Mettes et al., 2016). When we consider approaches
that use action class labels only VideoLSTM is state-of-the-art, im-
proving considerably over alternatives. Naturally, the action localiza-
tion approaches with the most amount of supervision thrive and Vi-
deoLSTM cannot compete with them. Interestingly, however,
VideoLSTM is able to slightly outperform recent methods that rely on
unsupervised action proposals in combination with
box (van Gemert et al., 2015) or point supervision (Mettes et al., 2016),
in addition to the action class. Note that these methods need thousands
of spatio-temporal action proposals (van Gemert et al., 2015), where we
predict a single proposal only. Several visual examples of our action
localization results are shown in Fig. 6. We conclude that VideoLSTM
returns very good action localization from an action class label only,
especially considering that only a single spatio-temporal proposal is
returned.

6. Conclusion

In this work we postulate that in order to model videos accurately
with LSTMs, we must adapt the model architecture to fit the video
medium and not vice versa. The video model must, therefore, address
common video properties, i.e., what is the right appearance and motion
representation, how to transform spatio-temporal video content into a
memory vector, how to model the spatio-temporal locality of an action,
simultaneously and not in isolation. We propose VideoLSTM, a recurrent
neural network architecture intended for action recognition.
VideoLSTM makes three novel contributions to address these video
properties in a joint fashion: (i) it introduces convolutions to exploit the
spatial correlations in images, (ii) it introduces a convolutional neural
network to allow for motion information to generate motion-based at-
tention maps and finally (iii) by only relying on video-level action class
labels it exploits the attention maps to localize the action spatio-

Fig. 5. VideoLSTM performs better than ALSTM of Sharma et al. (2015, 2016). The
benefit of temporal smoothing suggests most of our attentions are on the action fore-
ground, which does not seem to be the case for ALSTM.

Table 4
Comparison to state-of-the-art: fusion. The fusion experiment shows that VideoLSTM is
highly complementary to hand-crafted iDT features (Peng et al., 2014; Wang and Schmid,
2013) and object responses (Jain et al., 2015), resulting in good accuracy (averaged over
all 3 splits) on UCF101 and state-of-the-art on HMDB51.

UCF101 HMDB51

Jain et al. (2015) 88.5 71.3
Wang et al. (2015b) 91.5 65.9
Zhu et al. (2016) 93.1 63.3
Feichtenhofer et al. (2016b) 93.5 69.2
Wang et al. (2016) 94.2 69.4
de Souza et al. (2016) 92.5 70.4
Lev et al. (2016) 94.1 67.7
Feichtenhofer et al. (2016a) 94.6 70.3
Feichtenhofer et al. (2017) 94.9 72.2
VideoLSTM 88.9 56.4
VideoLSTM+ iDT + Objects 92.2 73.7

Table 5
State-of-the-art localization results ordered by supervision on THUMOS13 localization for an overlap threshold of 0.2. The numbers of Sharma et al. (2015); 2016) are based on our
ALSTM, as they don’t report action localization results. When considering action class supervision only, VideoLSTM is state-of-the-art. Compared to Saha et al. (2016) and
Weinzaepfel et al. (2015) VideoLSTM is worse, but note that we rely on an action class label only to make one prediction, whereas they need box supervision and up-to 16k trials to find
the best action location. Interestingly, VideoLSTM is able to outperform methods that also leverage box (van Gemert et al., 2015) or point supervision (Mettes et al., 2016) in addition to
the action class.

Training per video Testing on THUMOS13

#Class #Annotations #Proposals #Proposals mAP

Saha et al. (2016) action label ∼ 400 boxes 16k 16k 0.668
Weinzaepfel et al. (2015) action label ∼ 400 boxes 256 256 0.468
van Gemert et al. (2015) (from Mettes et al., 2016) action label ∼ 400 boxes 2299 2299 0.345
Mettes et al. (2016) action label ∼ 400 points 2299 2299 0.348
Sharma et al. (2015, 2016) action label n/a 0 1 0.055
Cinbis et al. (2014) (from Mettes et al., 2016) action label n/a 0 1 0.136
This paper action label n/a 0 1 0.369
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temporally. Experiments on three challenging datasets outline the
theoretical as well as the practical merits of VideoLSTM. As previously
observed by Fernando et al. (2015) on Hollywood2, a video re-
presentation capturing temporal dynamics is particularly superior for
videos with longer clips. We will also investigate the capability of our
VideoLSTM for modeling large-scale untrimmed videos, e.g., Activi-
tyNet (Heilbron et al., 2015), in our future work.
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